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Fatigue analysis of brittle materials using 
indentation flaws 
Part 1 Genera/theory 

B. R. LAWN, D. B. M A R S H A L L * ,  G. R. ANST IS t ,T .  P. DABBS 
Department of Applied Physics, School of Physics, University of New South Wales, 
Kensington, NSW 2033, Australia 

A two-part study has been made of the fatigue characteristics of brittle solids using 
controlled indentation flaws. In this part a general theory is developed, with explicit 
consideration being given to the role played by residual contact stresses in the fracture 
mechanics to failure. The distinctive feature of the formulation is a stress intensity factor 
for well-defined indentation cracks, suitably modified to incorporate the residual com- 
ponent. Taken in conjunction with a standard power-law crack velocity function, this 
leads to a differential equation for the dynamic fatigue response of a given material/ 
environment system. Reduced variables are then introduced to facilitate generation of 
"universal" fatigue curves, determined uniquely by the crack velocity e'xponent, n. A 
scheme for using these curves to evaluate basic fracture parameters from strength data 
is outlined. In this way the foundation is laid for lifetime predictions of prospective 
brittle components, as well as for reconstruction of the crack velocity function. One of 
the major advantages of the analysis is the manner in which the residual stress parameters 
are accommodated in the normalized fracture mechanics equations: whereas it is under- 
stood that all strength data are to be taken from test pieces in their as-indented state, so 
making it unnecessary to have to resort to inconvenient stress-removal procedures 
between the contact and failure stages of testing, a priori knowledge of the residual stress 
level is not required. The method is proposed as an economical route to materials evalu- 
ation and offers physical insight into the behaviour of natural flaws. 

1. Introduction 
The tendency for brittle glasses and ceramics to 
exhibit limited lifetimes under conditions of sus- 
tained loading is a direct manifestation of chemi- 
cally-assisted flaw growth [1]. A proper study of 
so-called "fatigue" behaviour is accordingly an 
essential element of structural design with brittle 
components. Central to most modern-day analyses 
of fatigue is the fracture mechanics concept of a 
well-behaved "Griffith flaw" which extends from 
its initial size to a failure configuration in accord- 
ance with some specifiable crack velocity function. 
Unfortunately, a priori knowledge of the flaw par- 

ameters needed for long-term lifetime prediction is 
generally unavailable, so it becomes necessary to 
characterize the flaw population in terms of data 
from control strength tests. This line of attack suf- 
fers from two major drawbacks: first, because of a 
common tendency to a large scatter in flaw severity 
from specimen to specimen with as-received sur- 
faces, an inordinately large number of tests has to 
be carried out in order to obtain statistically 
meaningful data for materials evaluation; second, 
because identification of the specific flaw ulti- 
mately responsible for failure is usually possible by 
test-piece examination only after the event, the 
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crack evolution can not be followed directly. The 
trend in engineering design has been for data 
manipulation to supplant physical insight as the 
underlying basis of fatigue analysis. 

One way of avoiding the problems of variability 
in strength testing is to introduce dominant flaws 
by controlled indentation [2-4] .  Recent studies in 
these laboratories along such lines have been made 
on the dynamic [5] (constant stress rate) and 
static [6] (constant stress) fatigue properties of 
soda-lime glass in the presence of water. In these 
studies the high degree of data reproducibility 
asssociated with the "indentation/strength" 
approach proved to be particularly useful for the 
determination of accurate kinetic constants in the 
crack velocity equation. More importantly, from 
detailed observations of the crack response through- 
out its history prior to test-piece failure [4, 5], it 
was unequivocally demonstrated that flaws could 
behave in a manner quite unlike that of the classi- 
cal Griffith sense, with important implications in 
lifetime prediction [6]. Specifically, cracks formed 
in an elastic-plastic contact field using a sharp 
indenter are subject to a residual driving force 
[3, 7] and this residual force has a profound influ- 
ence on the fracture mechanics to failure. Such 
effects would be felt in any naturally occurring 
flaw whose nucleation forces persisted in whole or 
in part in the material [8]. 

In this investigation, presented in two parts, we 
illustrate how the indentation/strength procedure 
can be used to determine the fatigue characteristics 
of brittle materials. Part 1 outlines the general 
theory, and Part 2 presents a case study on a "typi- 
cal ceramic". Whereas in our previous fatigue 
studies on soda4ime glass [5, 6] emphasis was 

placed on establishing the validity of the fracture 
mechanics formulation, especially with regard to 
the residual stress component, in this work we con- 
cern ourselves more with the practical issue of ma- 
terials evaluation. In the interest of experimental 
simplicity, the fatigue data are assumed to be taken 
exclusively from test-pieces in the "as-indented" 
state: the analytical complexity that attends the 
consequent need to deal with the residual stresses 
is considered more than offset by not having to 
remove these stresses by physical means (e.g. by 
annealing or surface grinding [9, 10], processes 
which could significantly alter the very nature of 
the flaws, or even of the material itself). Moreover, 
this additional complexity can be minimized by 
judicious choice of reduced variables, so that the 
need to specify an appropriate residual-stress par- 
ameter is avoided. Adoption of a Vickers hardness 
indenter for introducing the starting flaws, and of 
constant stress rates in the breaking routine, allows 
for convenient standardization of the procedure 
without seriously affecting the generality of the 
analysis. 

2. Theory of dynamic fatigue for 
indentation flaws 

2.1. Basic fracture mechanics f o r m u l a t i o n  
' In this subsection we summarize the basic features 
of the fracture mechanics formulation [5, 6]. A 
schematic diagram of the model indentation flaw 
system is given in Fig. 1. It is assumed that the 
specimen surface is free of all stresses prior to 
indentation. The indentation event itself produces 
a well-defined crack system, whose characteristic 
size c depends on the peak contact load P. Sub- 
sequent application of a tensile stress Oa causes the 
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Figure 1 Schematic diagram of 
Vickers-produced radial/median 
(RM) crack system, formed at 
peak indentation load P and 
subject to expansion in charac- 
teristic dimension c under sub- 
sequent application of tensile 
stress a a. Also shown is lateral 
(L) crack system and central de- 
formation zone (shaded). 
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crack system to grow toward an instability con- 
figuration. The crack which controls the strength 
is of  the "radial/median" type [7]. For the Vickers 
indentation geometry depicted in Fig. 1 there are 
two such cracks, orthogonal to each other and 
semicircular about the origin of  contact; both may 
expand under the action of  the applied stress 
(depending on whether this stress is uniaxiat or 
biaxial), but we focus our attention on the one 
ultimately responsible for failure. A second system 
of cracks, of  the "lateral" type [11, 12], remains 
passive during strength testing. All of  the cracks 
originate from the central deformation zone, 
which is also the source of the residual driving 
force. The stress intensity factor for the dominant 
radial/median crack may then be written 

~ P  
K - c3/2 -}-Oa(Tr~C) 1/2 ( C ) C o )  , (1) 

i.e. as the sum of residual-contact and applied- 
stress components:  X~ is a parameter of  the elast ic-  
plastic indentation field, determined for any given 
material by the ratio of  hardness to Young's 
modulus [7];  ~2 is a crack geometry parameter, 
equal to 4/~r 2 for an ideal centrally-loaded penny 
crack [13] but here modified by "the presence of 
crack neighbours, deformation zone and specimen 
free surface. The crack length eo pertains to the 
immediate post-indentation configuration, at which 
point the equilibrium condition K = K e, where K~ 
is the toughness, is satisifed [7]. Putting o~ = 0 in 
Equation 1 then gives Co = (x~P/Ke) z/3 as an initial 
condition for the ensuing strength test. In reality, 
it is not easy to avoid exposing the indented surface 
to a reactive environment (especially moisture, in 
the case of  many ceramics), so the crack may 
extend subcritically to some non-equilibrium size 
Co prior to application of the tensile stress [ 3 - 6 ] .  
Also, the parameters X~ and ~2 may be subject to 
departures from constancy during the various 
stages of  crack evolution [5, 14], suggesting that 
care needs to be exercised in specifying the terms 
in Equation 1. 

Before considering fatigue effects in any detail 
it is useful to treat the special case where the 
strength test is carried out in an inert environment. 
The resulting "inert strength" then serves as a 
convenient baseline for data reduction. Inserting 
the equilibrium requirement K = K e into Equation 
1 and solving for % gives 

% = (lr~ee)l/2 1 K~ca/2 l . (2) 
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The function Oa(C ) passes through a maximum, 
O" m , at 

3Kc 
o m - 4(n.fZCm)l/2 (3a) 

with 
/ \ 2/3 

= /4Xff ' /  (3b) Cm \K-2  ! 

In the crack-size range Co ~< c < c m the equilibrium 
remains stable, so the crack undergoes a stage of  pre- 
cursor growth as the stress is raised; at c = Cm the 
configuration becomes unstable and failure occurs, 
thereby defining the inert, residual-stress-sensitive 
strength % = om = o i. The idealized Griffith crack 
follows as the limiting case X~ = 0 in Equation 1, 
whence failure occurs spontaneously at the initial 
crack size c = co, defining the inert, residual- 
stress-free strength % = o ~ = Ke/(Trg2co) 1/2. It is 
noted that Co does not appear in Equation 3, i.e. 
the inert strength does not depend on the initial 
conditions, provided Co < Cm. 

Turning now to dynamic fatigue, we allow that 
crack growth can proceed along a subcritical path 
K < K e  according to some rate-dependent con- 
dition. This condition is generally expressed in 
terms of a crack velocity function, v (K) ,  most 
simply in power-law form 

v = Vo (K < K e ) ,  (4) 

where Vo and n are constants to be determined 
empirically for any given material/environment 
system. At K > K  e the crack expands relatively 
rapidly, limited only by the inertia of  the system. 
Generally, the v(K)  curve in the subcritical domain 
has more than one branch, corresponding to differ- 
ent mechanisms of  rate control [1]. Three regions 
are commonly distinguished: (i) Region I, at low 
K, with velocity controlled by rate of  reaction 
between environmental species and crack-tip 
bonds (with the possibility of  a zero-velocity 
threshold in K, corresponding to a fatigue limit in 
the strength); 0i) Region II, at intermediate K, a 
transport-controlled region where the velocity 
curve tends to a plateau; (iii) Region III,  at high K, 
a steeply rising section of the curve, independent 
of  the environment. Of these three regions it is 
Region I which is usually the most important,  since 
the crack kinetics are determined predominantly by 
the stages of  slowest growth. Thus,writing % = Oat, 
with the stress rate oa constant in dynamic fatigue, 



we may combine Equations 1 and 4 to obtain the 
following differential equation for crack size in 
terms of time 

- ] 

This differential equation must be solved by an 
integration procedure for the time to failure t~, 
adjusting the parameters v o and n where necessary 
to accommodate a multi-region crack velocity func- 
tion, the final critical crack size being determined by 
the instability requirement K = K e ,  d K / d c  > 0 in 
Equation 1. With tf thus determined the strength 

= 6 d f  follows, so allowing for construction of a 
dynamic fatigue function O(da). 

In general, the integration of Equation 5 has to 
be carried out numerically. An important excep- 
tion is in the Griffith limit Xr = 0, with a single- 
region (Region I) crack velocity function, whence 
the standard analytical solution 

O 0 = (Xda) 1/(n+1) (0 0 < o ~ (6) 

is obtained, where 

f l I  2 ( n + l ) , ,  o c,o,2-1 
x : . 

Thus the slope and intercept of the dynamic fatigue 
curve in logarithmic co-ordinates contains infor- 
mation which allows, in principle, for a determi- 
nation of the basic parameters vo and n. One of 
our aims is to devise a scheme for obtaining similar 
information from the fatigue curve for as-indented 
test pieces. 

2.2. Analysis of fatigue equation using 
reduced variables 

Equation 5 contains numerous variables, rep- 
resenting the loading conditions (P, 6a), configu- 
rational constants (Xr, ~ )  and material (Ke) and 
material/environment (%, n) fracture parameters. 
At this stage it is convenient to adopt a normaliz- 
ation procedure, and so avoid as far as possible 
having to specify these quantities. We accordingly 
follow our previous course [5 ,6] ,  with one 
significant modification: instead of normalizing 
with respect to the crack configuration which 
defines the inert strength at zero  residual contact 

! 

stress (o ~ Co), we now choose the corresponding 
configuration at non-zero  residual stress (ore, Cm) 
as our reference state. Not only is this modifi- 
cation appropriate in terms of our stated aim of 

taking fatigue data exclusively from as-indented 
test pieces (Section 1), it also usefully eliminates 
one degree of freedom in the fatigue analysis, as 
we shall demonstrate below. 

variables are thus introduced as Reduced 
follows: 

"SPa : O'a/O'm (7a) 

= c /c  m (7b) 

/ ~ =  tVo/C m (7C) 

g / =  K / K e .  (7d) 

Then Equation 1 simplifies to 

1 3YaCC in 
- - -  ( 8 )  4 cC3/2 4 

The function ~3'-(~) is plotted in Fig. 2, for 
several values of g a .  Two equilibrium crack 
dimensions ( ~ / =  1) of special interest are indi- 
cated: C~o = 0.397, corresponding to the initial, 
stable configuration at Ya  = 0; ~rn = 1, corre- 
sponding to the critical, unstable configuration at 
~g'a = J m  = 1, which determines the inert 
strength Yi  for as-indented test pieces. For tests 
in a reactive environment at constant stress rate 
~,d'a = Y a / 3 -  the crack grows from its initial size 
along some subcritical path ..3~< 1 until the 
instability condition ~ =  1, d J f / d ~ > 0  is 
attained, the final crack configuration ~ = g~ > 1 
at this point determining the dynamic fatigue 
strength g a  = y < 1. 

Formal analysis of the fatigue characacteristics 
proceeds by rewriting the crack velocity function 
in Equation 4 in reduced form, @ = d ~ / d . T ' =  
fffn,  whence we obtain, in analogy to Equation 5, 

1 + 3 j<baCg 1/2 ~ ' )  n 
c~ = 4 - ~ 7  { 4 . (9) 

Thus, once the stress rate is specified we have only 
one adjustable, the kinetic parameter n. With our 
previous normalization scheme [5,6] a second 
adjustable, relating to the residual-stress term Xr, 
appeared in the formulation; in the present case 
this term has been incorporated into the reference 
crack dimension era, Equation 3b. Solutions of the 
differential equation in Equation 9 for the reduced 
time to failure ~ may now be obtained by 
numerical integration. At this point an important 
simplification concerning the initial conditions 
may be introduced into the analysis. In our earlier 
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Figure 2 Normalized plot showing stress 
intensity factor for indentation flaw as a 
function of characteristic dimension, at 
several levels of applied stress. 

fatigue study of  indentation flaws in glass [6] it 
was shown that the time to failure was insensitive 
to whether Co or e~ was taken as the starting 
dimension (with c~ typically ~ 50% in excess of  
Co). The explanation for this behaviour lies in the 
fact that the function ~ ( g )  in Fig. 2 has a mini- 
mum between go  and g f ;  the crack velocity is 
therefore lowest in the intermediate region, which 
accordingly controls the kinetics. We thus appear to 
be justified in taking J - =  0, g =  go  = 0.397 
as an invariant initial condition, rather than having 
to specify g ~  as a further adjustable. A proviso 
for this step to remain a good approximation is 
that the condition g o  < 1 be satisfied, corres- 

ponding to Co <Crn in absolute terms; we recall 
from Section 2.1 that this is the same condition 
that needs to be satisfied in order that the inert 
strength be independent of  starting flaw size. 

Fig. 3 shows the results of  numerical solutions 
o f  Equation 5, using a Runge-Kut ta  procedure,* 
plotted logarithmically in the standard form 
Y ( ~ a )  for selected values of  n appropriate to a 
single-region crack velocity function. It is noted 
that each curve becomes closely linear in the 
fatigue region 5 > < g i  (the more so at higher n) 
in which case we may write, in direct analogy to 
Equation 6, 

y =  (A' 5>a) '/('' +') ( Y <  Yi), (10) 
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Figure 3 Normalized dynamic fatigue 
curves for as-indented specimens, com- 
puted for selected values of n. 

*See any standard text on numerical methods. 
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Figure 4 Plot showing variation of n' and A' as a function 
of n. Points are from slope/intercept evaluations of curves 
in Fig. 3 in accordance with Equation 10. 

where the primes are used here to indicate that  the 
adjustables relate to residual-stress-sensitive con- 
ditions. The variation of  these adjustables, from 
slope and intercept  determinations over the stress- 
rate range 10 -1~ < ~ a  < 10-2, is shown in Fig. 4 
as a function of  n. Again, the logarithmic co-, 
ordinates allow for linear fits, giving empirical 
relations 

n' = 0.763n ( l l a )  

and 
A' = 2.51n ~ ( l l b )  

which are accurate to ~ 1% for n and ~ 10% for 
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Figure 5 Normalized plot illustrating the effect of initial 
crack size on dynamic fatigue strength, at several levels of 
applied stress rate. 
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Figure 6 Normalized plot illustrating effect of incorpor- 
ating Region II crack velocity behaviour into dynamic 
fatigue analysis, for several values of truncation para- 
meter a. 

A'  in the region n > 10 (the accuracy declining 
markedly for smaller values of  n). 

Finally in this section, let us examine more 
closely the extent  to which we are justified in 
making some of  the assumptions which underlie 
the analysis. 

2.2. 1. Invariant initial condition 
Accordingly, Fig. 5 shows, for n = 80, the effect 
on strength Y of  a variable initial crack size c ~ .  
As anticipated, the results are insensitive to g o  
in the region cg~ < 1. Beyond this region the 
fatigue strength function Y ( ~ ' a )  begins to dim- 
inish (corresponding to a depression of  the curves 

in Fig. 3), and Equation 11 accordingly loses its 
accuracy. 

2.2.2. Single-region crack velocity function 
We may illustrate the point  by incorporating a 
Region II plateau into the analysis. This is done b y  
truncating the velocity at ~ = W a  = a ' ,  (0 < a 

1), where a = KcffKe defines a transition stress 
intensity factor. Recomputed fatigue curves for 
n = 80 are shown in Fig. 6. The influence of  
Region II clearly increases as a diminishes. Further 
modifications along these lines could be made to 
the computa t ion  to account for Region III behav- 
iour where considered necessary. 

2.2.3. Zero pro-indentation surface stress 
In many cases a specimen, by virtue of  its mechan- 
ical, thermal or chemical history, may exist in a 
state of  significant surface pro-compression (or, in 
unfavourable instances, in pro-tension). The requi- 
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Figure 7 Normalized plot illustrating effect of incorpor- 
ating residual pre-indentation surface compression into 
dynamic fatigue analysis, for several values of 2~ R. 

site amendment to the analysis is straightforward, 
with o~ in Equation 1 replaced by o~ -- Or{, where 
or{ is the residual compressive component (taken 
to be uniform over the crack area) [4]:  equiv- 
alently, Y ~  in Equation 8 is replaced by g a - -  
y r { ,  with j c a  = oR/era (ore still referring to 
inert strength at zero level of  pre-compression). 
Carrying this substitution through the formulation 
to Equation 9, one may generate modified fatigue 
curves, as shown in Fig. 7 at n = 80 for selected 
values of  J R . *  It is evident that moderate levels 
of  pre-existing surface stress can have a strong 
effect on the strength characteristics. 

3. Discussion 
We are now in a position to consider how we might 
obtain basic fracture parameters from dynamic 
fatigue data on as-indented specimens. The kinetic 
parameters are evaluated from the denormalized 
form of  Equation 10, using Equation 7 to convert 
back to absolute quantities 

o = (X'da) 1/("'+1~ (O<Oi) ,  (12) 

where r t n 
X' - A OmCm (13) 

Vo 

In combination with Equation 11 we then obtain 

n = 1.31n' (14a) 

and 
2.84n' 0.462 n' O m  C m  

Vo = X' (14b) 

Hence the slope Of the log o against log 6a plot in 
the reaction-controlled region (low da) immediately 
determines n, via Equation 14a. For instance, in 
our earlier dynamic fatigue study of  soda-lime 
glass in water [5] an "apparent" exponent n ' =  
13.7 -+ 0.2 was measured from data on as-indented 
specimens; the " true" exponent n = 18.0 -+ 0.3 
duly computed from Equation 14a compares 
favourably with the value n = 17.9 -+ 0.5 measured 
in the same earlier study from comparative data on 
specimens subjected to a post-indentation anneal 
(i.e. specimens of  zero residual stress, for which 
Equation 6 replaces Equation 12). The parameter 
v0 similarly follows from the intercepts of  the 
fatigue plot; in this case, however, a complete 
determination from Equation 14b cannot be made 
without knowledge of  Om and c m . Experimentally, 
om is measured readily as the inert strength oi, but 
c m requires additional, direct observation of  the 
critical crack configuration (see Part 2). Once Crm 
and c m are known, Equation 3 provides an esti- 
mate of  the terms Kc/(TrgZ) 1/2 and KJX~. Absolute 
solutions of  Equation 5 may now be obtained for 
any given loading conditions, thereby allowing for 
an evaluation of  the crack evolution from the true 
initial size Co to failure. 

Although we have focussed our attention on 
dynamic fatigue, the theory outlined in Section 2 
is not  restrictive. Thus to derive solutions for 
static fatigue it is necessary only to replace da t in 
Equation 5 by a constant aa, and to integrate as 
before. A demonstration of  the procedure is given 
by Chantikul et al. [6],  where parameters cali- 
brated from dynamic fatigue data are used to 
predict static fatigue lifetimes for the glass-water 
system. 

The above analysis also. establishes a basis for 
deriving the crack velocity curve. Of course, the 
form of the v(K)  function must be specified 
beforehand; in the present scheme the process of  

*In fact, the curves in Fig. 7 may be generated, to excellent approximation, simply by adding 2Ytt to the appropriate 
2Y(jcha) curve in Fig. 3. The reason for this is as follows. Suppose that we apply the stress SPa until the surface com- 

pression 2YR is exactly negated. Under inert conditions the crack would then attain the equilibrium length c~r o [4], 
which corresponds to the initial condition for unstressed surfaces. Hence the strength value is augmented in a direct 
manner by the pre-existing surface stress. Under non-inert conditions the crack at the stress-negation configuration may 
extend subcriticaUy beyond c~ 0. However, we have already seen, via Fig. 5, that the fatigue strength is reasonably inde- 
pendent of the initial condition. Hence the simple additivity operation remains effectively valid under all conditions. 
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fitting data on a fatigue plot does no more than 
provide values for the adjustable kinetic par- 
ameters. With n and Vo thus determined in Equation 
4, it remains only to specify Kc. (For materials of 
unknown toughness, an estimate can be con- 
veniently obtained from the quantity am P1/a in 
the inert-strength region, using data from selected 
reference materials to calibrate Equation 3 in an 
appropriate manner [15].) For cases in which a 
multi-region v(K) function is evident, a linear 
fitting procedure is practicable only with Region 
I: with Regions II and IIIa trial-and-error approach 
is probably the simplest means of parameter adjust- 
ment, e.g. by interpolation from plots of the type 
shown in Fig. 6. 

We have stipulated the condition co < cm as 
a proviso for the validity of the integration pro- 
cedure adopted in Section 2.2. Violation of this 
condition might occur via either of the following 
post-indentation processes: (i) excessive increase 

t in Co, due to subcritical crack growth in a reactive 
environment; (ii) excessive decrease in c m (see 
Equation 3b), due to residual-stress relief (e.g. by 
lateral crack development, surface grinding or 
annealing). Fortunately, such violation is expected 
to be the exception rather than the rule with 
Vickers indentations on most brittle materials 
[7, 15]. (If Co were to exceed cm, then Equations 
3 and 14 would, at best, allow for first-approxi- 
mation estimates of adjustable parameters, in which 
case the fitting of Equation 5 to the data might 
require an iteration procedure.) There is an implied 
tendency here for some of the non-kinetic par- 
ameters to be subject to a certain degree of vari- 
ability during the total crack evolution to failure. 
It is for this reason that it is considered preferable 
to determine the normalization quantities am and 
c m by direct experimental observation under the 
actual conditions of testing, rather than through 
efforts to predetermine ~2 and Xr (either by first- 
principles calculation or by calibration from data 
on "model" materials) in Equation 3. 

It is important to emphasize that the present 
analysis relates entirely to fatigue characteristics 
of test specimens in the as-indented state. By 
incorporating a residual contact term into the 
stress intensity factor for the indentation flaws we 
avoid all the potential complications which would 
inevitably attend any attempt to remove the 
associated residual stresses by physical means. 
Data may be processed in much the same way as in 
current conventional dynamic fatigue analysis 

[16]; it needs only to be recognised that the 
kinetic parameters so determined are apparent 
rather than true values, and that appropriate con- 
version formulae such as those in Equation 14 
must be invoked. This approach makes for extreme 
simplicity in the experimental test programme, 
with the usual benefits of relatively high reproduc- 
ibility in results, specimen economy, etc. which 
characterize indentation fracture techniques [12]. 
Of course, this does not eliminate the ultimate need 
to obtain information on the flaw populations of 
prospective in-service components. Our method 
simply enables us to treat the materials evaluation 
aspect of strength analysis in isolation from flaw 
statistics. 

While it should be unnecessary to remove any 
residual stresses from the specimen surface after 
indentation, the same may not be true of the 
specimen state before indentation. We indicated 
briefly in Section 2.2 that surface preparation can 
lead to significant levels of pre-compression (or 
pre-tension). Indeed, the deliberate introduction 
of surface compressive stresses can be a most 
effective means of strengthening brittle materials. 
However, for the immediate purpose of parameter 
evaluation the presence of such stresses serves only 
to complicate the analysis, not least by causing 
deviations from linearity in the fatigue plots (Fig. 
7) and is accordingly best avoided where possible 
(unless, of course, the surface compression is itself 
part of the evaluation). 

In conclusion, we should acknowledge that the 
use of controlled flaws for producing "universal" 
fatigue curves is by no means new. The concept de- 
rives from the early work of Mould and Southwick 
[ 17 ], who studied the fatigue properties of abraded 
glass surfaces. Although widely adopted by many 
subsequent workers in strength-testing programmes, 
abrasion flaws are comparatively ill-defined 
entities, in addition to which it is not usually pos- 
sible to identify the prospective failure site prior to 
testing. Consequently, specification of quantities 
such as P, Co and Cm is not straightforward as it is 
for indentation flaws. Furthermore, because of an 
increased tendency for abrasion flaws to chipping, 
especially in the regions of overlap with neigh- 
bouring damage sites, relief of residual stress is 
accentuated; in the case of glass this is sufficient to 
make e m <  c0 [18]. With natural flaws the quan- 
tity Xr appropriate to Equation 5 will be very 
much a function of specimen history; in this 
context the indentation studies provide valuable 
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insight in to  the depar tures  that  might  be expec ted  

f rom idealized Griff i th  behaviour.  

Acknowledgements 
The authors  wish to thank  P. Kelly for assistance 

wi th  the  computa t ions .  Funding  for this work  was 

provided  by  the Australian Research Grants Com- 

mi t tee .  

References 
1. S. M. WIEDERHORN, "Fracture Mechanics of 

Ceramics", Vol. 2, edited by R. C. Bradt, D. P. H. 
Hasselman and F. F. Lange (Plenum, New York, 
1974) p. 613. 

2. B. R. LAWN and D. B. MARSHALL, "Fracture 
Mechanics of Ceramics", Vol. 3, edited by R. C. 
Bradt, D. P. H. Hasselman and F. F. Lange (Plenum, 
New York, 1978) p. 205. 

3. D. B. MARSHALL and B. R. LAWN, 3]. Mater. Sci. 
14 (1979) 2001. 

4. D. B. MARSHALL, B. R. LAWN and P. CHANTI- 
KUL, ibid. 14 (1979) 2225. 

5. Idem, J. Amer. Ceram. Soc. 63 (1980) 532. 
6. P. CHANTIKUL, B. R. LAWN and D. B. MAR- 

SHALL, ibid. 64 (1981), to be published. 
7. B. R. LAWN, A. G. EVANS and D. B. MARSHALL, 

ibid. 63 (1980) 574. 

8. B. R. LAWN and T. R. WILSHAW, "Fracture of 
Brittle Solids" (Cambridge University Press, London, 
1975) Ch. 2. 

9. J. J. PETROVIC, R. A. DIRKS, L. A. JACOBSON 
and M. G. MENDIRATTA, J. Amer. Ceram. Soc. 59 
(1976) 177. 

10. J. J. PETROVIC and M. G. MENDIRATTA, "Frac- 
ture Mechanics Applied to Brittle Materials", edited 
by S. W. Freiman (ASTM Special Technical Publi- 
cation 678, Philadelphia, 1979) p. 83. 

11. B. R. LAWN and M. V. SWAIN, J. Mater. Sci. l0 
(1975) 113. 

12. B. R. LAWN and T. R. WILSHAW, ibid. 10 (1975) 
1049. 

13. B. R. LAWN and E. R. FULLER, ibid. 10 (1975) 
2016. 

14. B. R. LAWN, D. B. MARSHALL and P. CHANTI- 
KUL, ibid. 16 (1981) 1769. 

15. P. CHANTIKUL, G. R. ANSTIS, B. R. LAWN and 
D. B. MARSHALL, J. Amer. Ceram. Soc. 64 (1981), 
to be published. 

16. S.M. WlEDERHORN and J. E. RITTER, "Fracture 
Mechanics Applied to Brittle Materials", edited by 
S. W. Freiman (ASTM Special Technical Publication 
678, Philadelphia, 1979) p. 202. 

17. R. E. MOULD and R. D. SOUTHWICK, J. Amer. 
Ceram. Soe. 42 (1959) 542, 582. 

18. D. B. MARSHALL and B. R. LAWN, Comm. Amer. 
Ceram. Soe. 64 (1981) C6. 

Received 17 February and accepted 26 March 1981. 

2854 


